Cardiovascular disease and periodontitis: an update on the associations and risk

Abstract

Background: Associations between periodontitis and cardiovascular diseases have been recognized.

Material and Methods: New literature since the last European Workshop on Periodontology has been reviewed.

Results: The lack of reliable epidemiological data on disease prevalence makes an assessment of the associations and risks between periodontitis and cardiovascular diseases difficult. Two recent meta-analysis reports have identified associations between periodontitis and cardiovascular diseases (odds ratios: 1.1–2.2). Different surrogate markers for both disease entities, including serum biomarkers, have been investigated. Brachial artery flow-mediated dilatation, and carotid intima media thickness have in some studies been linked to periodontitis. Studies are needed to confirm early results of improvements of such surrogate markers following periodontal therapy. While intensive periodontal therapy may enhance inflammatory responses and impair vascular functions, studies are needed to assess the outcome of periodontal therapies in subjects with confirmed cardiovascular conditions. Tooth eradication may also reduce the systemic inflammatory burden of individuals with severe periodontitis. The role of confounders remain unclear.

Conclusions: Periodontitis may contribute to cardiovascular disease and stroke in susceptible subjects. Properly powered longitudinal case–control and intervention trials are needed to identify how periodontitis and periodontal interventions may have an impact on cardiovascular diseases.

Cardiovascular diseases comprise a variety of heart and vascular conditions including: ischaemia, atherosclerosis, peripheral artery disease, infective endocarditis, and acute myocardial infarction (Karchmer 1997). Cardiovascular diseases are common in many adult populations (Rosamond et al. 2007). Over the last 30 years, the greater life expectancy and changes in diet and exercise habits have resulted in a higher prevalence of obesity, elevated levels of blood cholesterol, hypertension, and diabetes mellitus which are all recognized cardiovascular risk factors. Smoking is another risk factor in cardiovascular disease contributing to the increasing incidence and mortality of cardiovascular diseases (Kuller 2006).

Atherosclerosis, and myocardial infarctions occur as a product of complex combinations of factors (Ross 1997). Myocardial infarctions, stroke, and thromboembolic events result from atherosclerosis and often in combination with a superimposed coronary thrombosis. Development of atherosclerosis begins already in the first or second decade of life, and with clinical manifestations many years later.

A large number of surrogate endpoints of future cardiovascular diseases has been identified. This includes assessments of carotid intima media thickness (IMT), flow-mediated dilatation of the brachial artery, serum biomarkers including high density lipoprotein (HDL), low density lipoprotein (LDL), cholesterol fibrinogen, triglyceride, high sensitivity CRP, HbA1c, and systolic/diastolic blood pres-
Periodontitis and cardiovascular diseases

Role of infection and immune response in periodontitis and cardiovascular disease

The role of infection in acute coronary syndrome, stroke, and atherosclerosis is disputed. An infectious burden may be less significant in cardiovascular disease development than previously thought (Stephane et al. 2007). The hypothesis that different bacteria are involved in the development of atherosclerosis may also be an effect of the total infectious burden and not caused by a single bacterial infection (Espinola-Klein et al. 2002, Honda et al. 2005). In the case of infective endocarditis, a specific microbial infection of the endothelial surface of the heart and heart valves is more evident. A large number of different types of bacteria, fungi, and virus have been identified in infective endocarditis of subjects age 60+ (Karchmer 1997, Baldassarri et al. 2004, Presterl et al. 2005).

Several studies have investigated the role of infection in cardiovascular diseases.

Studies suggest that Chlamydia pneumoniae and Helicobacter pylori can be linked to cardiovascular diseases (Liu et al. 2006, Miyazaki et al. 2006, Nyström-Rosander et al. 2006, Atar et al. 2007). Nevertheless, there is no common agreement on the role of bacteria and infection as a primary etiology for cardiovascular diseases. The infectious etiology of periodontitis is, however, well established (Socransky & Haffajee 1997, Paster et al. 2006). Several studies assessing the presence of bacteria associated with periodontitis in specimens collected from the aorta or other blood vessels have identified bacteria associated with periodontitis in samples from aorta and heart valves. A summary of such reports is provided (Table 2).
Table 1. Studies assessing associations between cardiovascular diseases and periodontitis

<table>
<thead>
<tr>
<th>Authors</th>
<th>Study design</th>
<th>Periodontal diagnosis</th>
<th>Medical diagnosis</th>
<th>Association</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mattila et al. (1989)</td>
<td>Case–control study</td>
<td>Total dental index: caries, periodontitis, peri-apical lesions, abscess (14 criteria). Subjects were assigned a score from 0 to 10</td>
<td>ACS consecutive cases, hospital confirmed cases</td>
<td>ACS-cholesterol (p < 0.001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Russell index</td>
<td>Incidence of coronary heart disease (CHD) 1974–1987</td>
<td>ACS-dental index (p < 0.01)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gingivitis</td>
<td></td>
<td>ACS-smoking (p < 0.01)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Periodontitis</td>
<td></td>
<td>Odds ratio was not calculated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CHD-gingivitis: OR = 0.95, 95% CI: 0.5–1.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CHD-periodontitis: OR = 1.5, 95% CI: 0.8–3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CHD = CHD-Russell index: OR = 1.1, 95% CI: 0.9–1.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OR = 1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>95% CI: 1.01 to 2.1</td>
</tr>
<tr>
<td>DeStefano et al. (1993)</td>
<td>Epidemiological study based on the NHANES I and the (NHEFS) data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beck et al. (1996)</td>
<td>A cohort study with combined data from (1) the Normative Aging Study, (2) the Dental Longitudinal Study (Veterans Affair)</td>
<td>Bone loss score based on 5 different categories was assessed. More than 20% sites with bone loss = periodontitis</td>
<td>Coronary heart disease including non-fatal infarction, angina pectoris, and coronary heart disease death</td>
<td></td>
</tr>
<tr>
<td>Morrison et al. (1999)</td>
<td>A retrospective study 1972–1993, the Nutrition Canadian Survey</td>
<td>Oral health/periodontitis</td>
<td>Mortality experience in coronary heart disease</td>
<td>OR = 2.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>95% CI: 1.3 to 3.7</td>
</tr>
<tr>
<td>Persson et al. (2002)</td>
<td>Cross-sectional study of older subjects 65+</td>
<td>Composite of radiographic evidence and probing pocket depth</td>
<td>Self-reported history of cardiovascular diseases confirmed by medication lists</td>
<td>OR = 4.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>95% CI: 2.4–7.9</td>
</tr>
<tr>
<td>Lessem et al. (2002)</td>
<td>Retrospective case series</td>
<td>Radiographic evidence of alveolar bone loss</td>
<td>Heart transplant cases were searched through medical records</td>
<td>76% of cases had periodontitis before heart transplantation.</td>
</tr>
<tr>
<td>Meurman et al. (2003)</td>
<td>Case–control study of 256 subjects with heart disease and 250 controls</td>
<td>Revised version of the dental index as described by Mattila et al., 1989 and based on clinical and radiological dental examinations (MDI index)</td>
<td>Serum samples of 256 patients with New York Heart Association class II–IV heart disease</td>
<td>High MDI/heart disease</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alveolar bone loss ≥4 mm at approximal sites Different proportional rates from <10% to >50% of sites with alveolar bone loss</td>
<td></td>
<td>OR = 1.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>95% CI: 1.2–1.5</td>
</tr>
<tr>
<td>Persson et al. (2003c)</td>
<td>Matched case–control study based on consecutive cases of acute coronary syndrome</td>
<td>Acute coronary syndrome consecutive cases with hospital diagnosis. Age, gender, smoking status, socio-economic matched controls through medical examination</td>
<td>Serum samples of 256 patients with New York Heart Association class II–IV heart disease</td>
<td>OR = 1.2–1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Positive or negative duplex ultrasonography Positive or negative duplex ultrasonography</td>
<td>Hospital confirmed cases with coronary heart disease in treatment</td>
<td>OR = 1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>95% CI: 1.1–2.9</td>
</tr>
<tr>
<td>Ravon et al. (2003)</td>
<td>Case–control study</td>
<td>Bone loss ≥4 mm at approximal sites at >30% of sites Periodontitis defined by probing pocket depth. One site or more ≥5 mm New index for periodontal infection risk index (PIRI)</td>
<td>Hospital confirmed cases with coronary heart disease in treatment</td>
<td>OR = 6.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>95% CI: 1.8–23.0</td>
</tr>
<tr>
<td>Geerts et al. (2004)</td>
<td>Case–control study 108 coronary heart disease cases and 62 healthy control subjects</td>
<td>Clinical attachment level ≥3 mm was used to define periodontitis</td>
<td>Coronary artery calcification (Agatston score)</td>
<td>OR = 1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>95% CI: 0.5–4.2</td>
</tr>
<tr>
<td>Nakib et al. (2004)</td>
<td>Epidemiological study of 6931 subjects (1996–2000)</td>
<td>Subjects without heart disease as defined by ECG analysis were studied</td>
<td></td>
<td>Not statistically significant</td>
</tr>
<tr>
<td>Shimazaki et al. (2004)</td>
<td>Case–control study of 957 subjects</td>
<td>Periodontal status of 1,111 374 males and 583 female Japanese with ≥10 teeth was studied.</td>
<td>Subjects without heart disease as defined by ECG analysis were studied</td>
<td>Adjusted for demographic factors</td>
</tr>
<tr>
<td>Beck et al. (2005)</td>
<td>Cross-sectional study and a subset of participants in the Atherosclerosis Risk in Communities (ARIC) Study</td>
<td>Routine clinical data Subgingival samples Antibody titres to a selection of bacteria including: A. actinomycetemcomitans, C. ochracea P. intermedia T. denticola</td>
<td>Coronary heart disease (ACS)</td>
<td>PPD definition: OR = 1.7 95% CI: 1.01–2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CAL definition: OR = 1.7 95% CI: 1.1–2.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The study failed to identify an association between ACS and periodontitis based on clinic data. Microbiological data suggested significant odds ratios for some bacteria (see text)</td>
</tr>
</tbody>
</table>
Periodontitis and cardiovascular diseases

Table 1. (Contd.)

<table>
<thead>
<tr>
<th>Authors</th>
<th>Study design</th>
<th>Periodontal diagnosis</th>
<th>Medical diagnosis</th>
<th>Association</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engebretson et al. (2005)</td>
<td>Case–control study</td>
<td>Radiographic assessment of carotid calcification and alveolar bone loss</td>
<td>Ultrasound</td>
<td>OR: 3.6, 95% CI: 1.4–9.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Assessments were performed for:</td>
<td>Subjects treated for coronary heart disease (angioplasty, by-pass grafting)</td>
<td>Association between bone loss and carotid artery plaque</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Number of remaining teeth and pathological periodontal pockets (≥4 mm), Denture/no dentures</td>
<td></td>
<td>Periodontal pockets and coronary heart disease</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertical bone loss</td>
<td></td>
<td>OR: 3.8, 95% CI: 1.68–8.74</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dentures and coronary heart disease</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OR: 4.6 (0.99–21.28)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No relationship to vertical bone loss</td>
</tr>
<tr>
<td>Buthlin et al. (2005)</td>
<td>Case–control study, Women only</td>
<td>Percentage of sites with clinical attachment loss and probing pocket depth were dichotomized</td>
<td>Medically confirmed acute coronary syndrome</td>
<td>Adjusted OR: 3.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cueto et al. (2005)</td>
<td>Case–control study</td>
<td>Percentage of sites with clinical attachment loss and probing pocket depth were dichotomized</td>
<td>Medically confirmed acute coronary syndrome</td>
<td>Adjusted OR: 3.1</td>
</tr>
<tr>
<td>Holmlund et al. (2006)</td>
<td>Case–control study, referred dental patients for periodontal care</td>
<td>Periodontal index scale 0–4 dependent on extent of bone loss (defined as > 1/3 root length, bleeding on probing and teeth with furcation)</td>
<td>Subject self-report of a history of myocardial infarction or high blood pressure (not defined)</td>
<td>Periodontitis and myocardial infarction</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OR: 2.7, 95% CI: 1.1–6.5</td>
</tr>
<tr>
<td>Spahr et al. (2006)</td>
<td>Case–control study</td>
<td>CPITN index</td>
<td>Angiography confirmed coronary heart disease and controls with no medical history</td>
<td>OR: 1.67, 95% CI: 1.08–2.58</td>
</tr>
<tr>
<td>Geismar et al. (2006)</td>
<td>Case–control study</td>
<td>Full mouth periodontal exam.</td>
<td>Routine serum assay. Confirmed medical conditions coronary disease (0110) or health (n = 140)</td>
<td>OR = 6.6, (95% CI: 1.9 to 25.6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Radiographic assessments</td>
<td></td>
<td>Bone Loss</td>
</tr>
<tr>
<td>Rech et al. (2007)</td>
<td>Case–control study</td>
<td>Probing pocket depth > 3 mm, and/or bleeding on probing, and/or loss of clinical attachment, and/or bone loss. Diagnosis defined by clinicians unaware of medical status</td>
<td>ACS consecutive cases with hospital diagnosis</td>
<td>OR = 4.5, 95% CI: 1.3–15.6</td>
</tr>
</tbody>
</table>

ACS, acute coronary syndrome; CHD, coronary heart disease; OR, odds ratio.

Streptococcal species have also been linked to acute coronary syndrome (Li et al. 2000, Herzberg et al. 2005, Nomura et al. 2006, Plummer & Douglas 2006, Renvert et al. 2006). In oral biofilm formations, streptococci coaggregate with Gram-negative bacteria including Porphyromonas gingivalis and the same mechanism may be part of colonization of P. gingivalis on endothelial cells (Maeda et al. 2004). Others have, however, failed to demonstrate that the counts of Aggregatibacter actinomycetemcomitans, P. gingivalis, Parvimonas micra, Dialister pneumosintes, or Campylobacter rectus could be associated with cardiovascular disease as defined by angiography (Nonnemacher et al. 2007).

Sero-epidemiologic studies

A majority of medical studies suggesting an association between antibody titres against common pathogens and cardiovascular diseases including stroke have particularly focused on C. pneumoniae, and H. pylori (Table 3). Recent systematic reviews and meta-analysis of published reports have identified that elevated antibody titres to bacteria associated with periodontitis can be linked to cardiovascular disease risk (Meurman et al. 2003, Mustapha et al. 2007). A summary of studies on serum antibody titres to bacteria associated with periodontitis and cardiovascular disease is presented (Table 4). High antibody titers to A. actinomycetemcomitans specifically have been associated with coronary heart disease (Pussinen et al. 2004a,b, 2005, 2007a,b, Beck et al. 2005, Vilkuna-Rautiainen et al. 2006). Serum immunoglobulin A (IgA) and IgG antibody titres to A. actinomycetemcomitans have also been linked to future stroke event (Pussinen et al. 2004a).

Traditional cardiovascular risk factors

Age

Older patients often suffer from many diseases and many geriatric subjects with acute coronary syndrome have multi-organ failures (Taneva et al. 2004). Age is an important factor associated with both periodontitis and cardiovascular diseases. Studies in Mexico on the prevalence of periodontitis among older subjects have revealed high prevalence rates of periodontitis varying between 27% and 73%, and depending on socioeconomic and geographic conditions. Furthermore, the severity of periodontitis could be linked to high blood pressure and high body mass index (BMI) (Borges-Yáñez et al. 2006). In a study of 1763 subjects between age 38 and 88 in Japan, subclinical aortic atherosclerosis as assessed by magnetic resonance imaging (MRI) appears to be present in 50% of subjects and increasing with age (Oyama et al. 2008). In a study of people 80 years and older in an affluent part of central Stockholm, Sweden the prevalence of severe periodontitis in older adults approached 50% (Holm-Pedersen et al. 2006). Similar high prevalence rates of periodontitis in older subjects have been reported from Denmark (Krøstrup & Petersen 2006). Thus
it is likely that many of these older subjects also have significant severity of cardiovascular disease. There are few studies having assessed the association between periodontitis and cardiovascular disease in older subjects (Persson et al. 2002, Cueto et al. 2005). In the study by Persson et al. (2002) approximately 50% of subjects older than 60 years of age had periodontitis. In addition, approximately 55% had either a diagnosis of atherosclerosis, or a history of atherosclerosis, or a history of diabetes mellitus, or a history of cardiovascular disease, or a history of myocardial infarction.

ACS, acute coronary syndrome; ELISA, enzyme linked immuno sorbent assay; OR, odds ratio; PCR, polymer chain reaction; P. intermedia, Porphyromonas intermedia; P. gingivalis, Porphyromonas gingivalis; T. forsythia, Tannerella forsythia; S. mutans, Streptococcus mutans; T. denticola, Tannerella denticola; A. actinomycetemcomitans, Aggregatibacter actinomycetemcomitans; C. rectus, Campylobacter rectus.

Table 2. Examples of studies on the role of bacteria in periodontitis as link to cardiovascular disease

<table>
<thead>
<tr>
<th>Authors</th>
<th>Bacteria/type of study</th>
<th>Study design</th>
<th>Condition/result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haraszy et al. (2000)</td>
<td>A. actinomycetemcomitans, P. gingivalis</td>
<td>Case series with samples from 50 subjects requiring endarterectomy. PCR analysis</td>
<td>61% of 36 samples positive for bacteria included one or more of the species studied. 36% were positive for P. gingivalis.</td>
</tr>
<tr>
<td>Beck et al. (2005)</td>
<td>See also text Table 1 case-control study Beck et al</td>
<td>Serum antibody titres to 17 different species in periodontitis: ACS</td>
<td>OR: A. actinomycetemcomitans 1.7(95% CI: 1.2–2.7) OR C. ochracea 2.0 (95% CI: 1.2–3.0)</td>
</tr>
<tr>
<td>Fiehn et al. (2005)</td>
<td>A. actinomycetemcomitans, C. rectus, P. gingivalis, T. forsythia, and oral streptococci</td>
<td>179 specimens of atherosclerotic plaque removed from carotid or femoral arteries were studied by use of PCR techniques</td>
<td>DNA of periodontal pathogens was detected in atherosclerotic plaques. P. gingivalis was rarely found and P. intermedia more frequently</td>
</tr>
<tr>
<td>Kozarov et al. (2006)</td>
<td>A. actinomycetemcomitans, P. gingivalis, P. intermedia, S. aureus, S. epidermidis, S. mutans, T. forsythia, T. denticola</td>
<td>129 samples of DNA extracted from atheromas from 29 individuals were studied</td>
<td>DNA from oral infectious agents is commonly found in atheromas from young but especially from elderly subjects. The contribution of C. pneumoniae to inflammation may be minimal. S. mutans was found in 20%, S. aureus in 5% and S. epidermidis in 10%, bacteroides species were found in 17% of young and in 80% of older subjects.</td>
</tr>
<tr>
<td>Nomura et al. (2006)</td>
<td>S. mutans</td>
<td>Heart valve specimens from 52 patients and atheromatous plaque specimens from 50 patients were studied and dental plaque specimens from 41 patients before surgery</td>
<td>The serotype distribution in cardiovascular patients was significantly different from that in healthy subjects, suggesting that S. mutans serotype may be related to cardiovascular disease.</td>
</tr>
<tr>
<td>Renvert et al. (2006)</td>
<td>The subgingival pathogens were assayed by the checkerboard DNA–DNA hybridization method. 40 species examined</td>
<td>A total of 161 consecutive surviving cases admitted with a diagnosis of acute coronary syndrome and 161 matched control subjects were studied.</td>
<td>The oral bacterial load of S. intermedius, S. sanguinis, S. anginosus, T. forsythia, T. denticola, and P. gingivalis are concomitant risk factors in ACS.</td>
</tr>
<tr>
<td>Aimetti et al. (2007)</td>
<td>T. forsythia, P. gingivalis, T. denticola, P. intermedia, and A. actinomycetemcomitans</td>
<td>DNA was extracted from subgingival plaque samples and carotid atheromas from 33 subjects</td>
<td>Bacterial DNA was detected in 31 out of 33 endarterectomy specimens. None of the samples tested positive for DNA from periodontal pathogens. Patients with ACS had significantly higher plaque scores, gingival index, and P. gingivalis counts than stable patients.</td>
</tr>
<tr>
<td>Gotsman et al. (2007)</td>
<td>P. gingivalis</td>
<td>201 patients with stable angina or ACS who underwent a periodontal assessment. Severity of coronary artery disease was determined by the number of obstructed coronary arteries</td>
<td>The absence of putative pathogenic bacteria in internal mammary arteries, and their presence in a high percentage of atherosclerotic coronary arteries support the concept that periodontal organisms are associated with the development and progression of atherosclerosis.</td>
</tr>
<tr>
<td>Nakano et al. (2006)</td>
<td>S. mutans</td>
<td>35 heart valves and 27 atheromatous plaques were studied by PCR.</td>
<td>S. mutans was detected in 69% of heart valves and in 74% of atheromatous plaques.</td>
</tr>
<tr>
<td>Nakano et al. (2007)</td>
<td>A. actinomycetemcomitans</td>
<td>60 heart valves, 10 with endocarditis, and 50 with valvular disease and dental plaque were analysed by PCR. Serotyping of A.a. was performed</td>
<td>A. actinomycetemcomitans serotype e, and f was detected in both dental plaque and cardiovascular specimens.</td>
</tr>
<tr>
<td>Pucar et al. (2007)</td>
<td>A. actinomycetemcomitans, C. pneumoniae, P. intermedia, P. gingivalis, T. forsythia, and Cytomegalovirus</td>
<td>Patients with a diagnosis of coronary artery disease were studied. Coronary arteries with atherosclerosis and 15 internal mammary arteries without clinically assessable atherosclerotic degeneration were investigated</td>
<td>The absence of putative pathogenic bacteria in internal mammary arteries, and their presence in a high percentage of atherosclerotic coronary arteries support the concept that periodontal organisms are associated with the development and progression of atherosclerosis.</td>
</tr>
<tr>
<td>Zaremba et al. (2007)</td>
<td>A. actinomycetemcomitans, C. rectus, F. nucleatum, P. gingivalis, P. intermedia, T. forsythia, T. denticola</td>
<td>The incidence of periodontal bacteria in atherosclerotic plaque by DNA analysis from 20 subjects was studied</td>
<td>A. actinomycetemcomitans in 1/20</td>
</tr>
</tbody>
</table>

ACS, acute coronary syndrome; ELISA, enzyme linked immuno sorbent assay; OR, odds ratio; PCR, polymer chain reaction; P. intermedia, Porphyromonas intermedia; P. gingivalis, Porphyromonas gingivalis; T. forsythia, Tannerella forsythia; S. mutans, Streptococcus mutans; T. denticola, Tannerella denticola; A. actinomycetemcomitans, Aggregatibacter actinomycetemcomitans; C. rectus, Campylobacter rectus.
stroke, very high blood pressure, or acute coronary syndrome. In another study, an association between age and dental conditions in relation to stroke has also been presented (Lee et al. 2006).

Gender

There is evidence to suggest that the extent of atheroma assessed by intravascular ultrasound in women is less severe and prevalent than in men and independent of other traditional cardiovascular risk factors (blood pressure, serum LDL levels, and BMI) (Nicholls et al. 2007). Gender-related risk factors and cardiovascular disease outcomes in relation to periodontitis remain largely unknown (Pilote et al. 2007). Data from the population-based study of health in Pomerania (SHIP) (1913 subjects), have, however, identified an association between tooth loss and left ventricular hypertrophy in women but not in men (Völzke et al. 2007). Similarly, Desvarieux et al. (2004) have reported that measures of poor oral health including tooth loss and periodontitis could be related to subclinical atherosclerosis in men but not in women. Clinical measures of periodontitis (number of probing pocket depths ≥ 4 mm) have been associated with coronary heart disease but only in women after controlling for age, smoking, BMI, diabetes, education, and place of birth (Buhlin et al. 2005).

Other investigators have failed to identify gender differences in the association between periodontitis and cardiovascular diseases (Andrianakaja et al. 2007). Thus, the role of female gender as effect modifier in the association between periodontitis and risk for cardiovascular disease is unclear. It may, in part, depend on the fact that women might be less likely to survive a heart attack (Radovanovic et al. 2007).

Socioeconomic factors

The disease burden and loss of economic output associated with chronic diseases, mainly cardiovascular diseases,
account for around 80% of the total burden of chronic disease mortality in developing countries (Abegunde et al. 2007). Less affluent socioeconomic conditions in childhood may have a modest persisting influence on risk of coronary heart disease later in life (Ramsay et al. 2007). Thus, age-adjusted odds of coronary heart disease were 2.2 times higher for low-income groups than for high-income groups and with no gender differences (Kivimäki et al. 2007). In a Swedish study comprising >340,000 subjects, data have suggested that socioeconomic factors affect the mortality rate of ischemic coronary disease also when adjusted for age (Chaix et al. 2007). Several studies have suggested a robust association between severe periodontitis and specific socioeconomic factors including low education, low income, and belonging to disadvantaged neighbourhoods (Borrell et al. 2006a, b, Peres et al. 2007). There are no studies that specifically have considered the relationship between socioeconomic status and periodontitis and the impact of these factors on coronary heart disease, atherosclerosis, or stroke.

Smoking

Tobacco use is one of the most important causes of acute coronary syndrome globally, and especially in men (Teo et al. 2006). Data suggest that since a public smoking ban was introduced in New York city the rate of hospital admissions with a diagnosis of acute coronary syndrome decreased by 8%. This was solely accounted for by the impact of reduced smoking (Juster et al. 2007). The early work on a relationship between periodontitis and cardiovascular disease by DeStefano et al. (1993)

Table 4. The role of infection and antibody titres in subjects with periodontitis in relation to cardiovascular disease

<table>
<thead>
<tr>
<th>Authors</th>
<th>Bacteria</th>
<th>Antibodies studied</th>
<th>Disease</th>
<th>Results</th>
<th>Antibody function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Furuichi et al.</td>
<td>A. actinomycetem-comitans</td>
<td>Serum antibodies to P. gingivalis fimбриae, and whole cell P. gingivalis and A. actinomycetem-comitans</td>
<td>Periodontitis and risk markers for cardiovascular disease (CRP, lipedemia, blood pressure, body mass index, WBC counts)</td>
<td>Significant association between antibody titer levels and risk markers for CVD</td>
<td>Elevated titres suggestive of CVD risk</td>
</tr>
<tr>
<td>(2003)</td>
<td>P. gingivalis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pussinen et al.</td>
<td>A. actinomycetem-comitans</td>
<td>Serum IgA and IgG to these bacteria</td>
<td>Case-control study of subjects with or without myocardial infarction but unknown dental status</td>
<td>No association for IgA or IgG titres to A. actinomycetem-comitans and myocardial infarction</td>
<td>Infection by P. gingivalis as assessed by serum titres may increase the risk for myocardial infarction</td>
</tr>
<tr>
<td>(2004b)</td>
<td>P. gingivalis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beck et al.</td>
<td>A. actinomycetem-comitans C. ochraceae P. intermedia T. denticola V. parvula</td>
<td>Serum IgG antibody titres to 17 oral pathogens including P. gingivalis</td>
<td>Periodontitis and coronary heart disease</td>
<td>Elevated titres and reduced risk in women but elevated titres and risk for stroke in men</td>
<td>Antibody titres to bacteria listed suggestive of CVD risk. P. gingivalis was not included</td>
</tr>
<tr>
<td>(2005)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Johansson et al.</td>
<td>A. actinomycetem-comitans</td>
<td>Serum antibodies to A.a. leukotoxin</td>
<td>Stroke event but with no information on dental conditions</td>
<td>Elevated titres and reduced risk in women but elevated titres and risk for stroke in men</td>
<td>Conflicting impact of antibody titres by gender</td>
</tr>
<tr>
<td>(2005)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pussinen et al.</td>
<td>A. actinomycetem-comitans P. gingivalis</td>
<td>Serum IgA and serum IgG titres to bacteria listed</td>
<td>ACS incl. death. No information on dental conditions</td>
<td>High titres associated with risk of sub-clinical, and coronary disease</td>
<td></td>
</tr>
<tr>
<td>(2005)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vilkuna-Rautiainen et al. (2006)</td>
<td>Herpes simplex virus A. actinomycetem-comitans P. gingivalis</td>
<td>Serum IgA and IgG titres</td>
<td>Relationship between serum titres to CVD risk and markers of HDL, cholesterol</td>
<td>Combined HSV and P. gingivalis antibodies inversely correlated to HDL</td>
<td>Enhanced CVD risk by combined high titer levels and reduced HDL counts</td>
</tr>
<tr>
<td>Pussinen et al.</td>
<td>A. actinomycetem-comitans P. gingivalis</td>
<td>Serum IgA and serum IgG to bacteria listed</td>
<td>Case–control study on stroke. No knowledge about dental conditions</td>
<td>Higher stroke risk in never smoking men for elevated IgA titres. In women for IgG titres and stroke</td>
<td>Antibody titer differences by gender and risk for stroke</td>
</tr>
<tr>
<td>(2007a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yamazaki et al.</td>
<td>12 different bacteria including P. gingivalis 381 and P. gingivalis SU63</td>
<td>Serum IgG titres by ELISA</td>
<td>Case–control study subjects with coronary heart diseases, or periodontitis, or healthy subjects</td>
<td>A high frequency of antibody positivity for P. gingivalis SU63 but not for FDC381 disease subjects</td>
<td>Elevated antibody titres to high virulent P. gingivalis a risk for CVD</td>
</tr>
</tbody>
</table>

Acs, acute coronary syndrome; CVD, cardiovascular disease; HDL, high density lipoprotein; HSV, herpes simplex virus; *A. actinomycetem, Aggregatibacter actinomycetemcomitans; P. gingivalis, Porphyromonas gingivalis; T. denticola, Tannerella denticola.
was criticized based on the management of the data in relation to smoking habits as a confounding factor (Hjooel et al. 2001). Thus, when adjusted for smoking, Hjooel et al. (2001) failed to reach the same conclusions as DeStefano et al. (1993). Data derived from large population based case–control studies have demonstrated that the association between periodontitis and cardiovascular disease was identified independent from the possible confounding effect of smoking (Persson et al. 2005b, Holmlund et al. 2006, Andrianakja et al. 2007). Additional studies are needed to better understand the role of smoking in this potential link between periodontitis and cardiovascular diseases.

Metabolic factors

BMI has been strongly linked to cardiovascular disease, and especially in relation to coexisting diabetes mellitus (Balkau et al. 2007). An association between high body weight measures early in life and an increased risk for heart disease has been reported (Lawlor & Leon 2005). Data suggest that greater body weight has an influence on blood pressure and serum cholesterol levels, and that this may account for approximately 45% of the increased risk of future coronary heart disease (Bogers et al. 2007).

Thus, the effects of increasing body weight, mostly in the western world, could outweigh any effort made to reduce cardiovascular risk by smoking cessation, or perhaps periodontal intervention. An association between a high BMI and periodontitis has been demonstrated (DallaVecchia et al. 2005, Saito et al. 2005, Linden et al. 2007). When controlling for BMI periodontal conditions in women has been linked to coronary heart disease (Buhlil et al. 2005).

LDL are involved in the transport cholesterol in the blood circulation and clearly implicated in the development and progression of atherosclerosis resulting in heart attack, stroke, and peripheral vascular diseases. HDL have been implicated in the transport of cholesterol to the liver for its excretion or re-utilization. Thus, the combination of high LDL and low HDL levels are therefore predictive of cardiovascular disease (Barter et al. 2007). Thus high LDL and low HDL would suggest a high risk of cardiovascular disease and in contrast to low serum LDL and high serum HDL levels.

Data have also suggested a relationship between elevated fasting serum triglyceride levels and measures of systemic inflammation including white blood cell (WBC) counts (Rivera et al. 2007). The relationship between hypertriglyceridemia and low-grade inflammation defined by WBC counts might also be mediated by insulin resistance (Onat et al. 2006, Shimazaki et al. 2007).

A trend of a dose dependent relationship between serum levels of metabolic markers including triglycerides, total cholesterol, LDL, HDL, and blood glucose levels have been suggested in subjects with severe periodontitis (Katz et al. 2002, Nibali et al. 2007).

Hypertension

Recent evidence have linked periodontitis with high blood pressure (Inoue et al. 2005, Borges-Yáñez et al. 2006). Other measures of poor oral health (tooth loss) have been associated with hypertension (Völzke et al. 2006). Further studies are needed to confirm this relationship as many adults suffer from high blood pressure and use medication to control blood pressure.

Stress

Financial stress impacts on the individual inflammatory burden resulting in elevated serum levels of several biomarkers [interleukin-1 (IL), -6, and higher serum high sensitivity CRP] (Gémes et al. 2007). Older subjects with a major depression disorder have higher levels of high sensitivity CRP and also present with severe coronary disease (Andrei et al. 2007). Other studies have suggested that the association between stress and elevated tissue plasminogen activator (t-PA) antigen levels may represent one plausible mechanism behind the accelerated rate of developing a prothrombotic and increased morbidity and mortality in cardiovascular diseases (Mausbach et al. 2007, Shauir et al. 2007).

Studies of older depressed subjects with elevated risk for cardiovascular disease have shown a hypocortisol response to acute stress. This impaired cortisol response might contribute to chronic inflammation reflected as elevated high-sensitivity CRP values in depressed patients and result in an increased cardiovascular disease risk (Taylor et al. 2006a). In an age adjusted model analysis based on 1400 subjects, the effects of stress associated with financial strain and distress could be linked to more severe periodontitis (Genco et al. 1999) and to poor treatment outcomes (Elter et al. 2002). Data have also suggested that subjects with periodontitis and with inadequate stress behaviour strategies (defensive coping) are at greater risk for severe periodontitis (Wimmer et al. 2002, Ng & Leung 2006). Other studies have, however, found no significant association between periodontitis and psychosocial factors in older subjects (Persson et al. 2003b, Solis et al. 2004, Castro et al. 2006). Differences in periodontitis and/or psychological status, age, and ethnicity may explain these differences in conclusions. The fact that stress has been identified both in cardiovascular disease, and in dental studies suggests that stress might be a risk factor for both conditions and that stress may trigger an inflammatory response expressed independently in cardiovascular diseases and in periodontitis. Further studies are needed to assess the impact of stress on the link between periodontitis and cardiovascular diseases.

Bacteremia

One mechanism how periodontitis may be associated with cardiovascular diseases is through bacteremia. The levels of streptococci spp. in blood samples following periodontal intervention may be higher than for any other group of bacteria (Daly et al. 2001). This observation is important as streptococci might be specifically linked to a risk for cardiovascular diseases (Herzberg et al. 2005, Renvert et al. 2006). Data suggest that 80% of subjects present with positive bacterial cultures immediately following subgingival debridement (Forner et al. 2006a, b, Lafaurie et al. 2007). Others have, however, shown that the incidence of bacteremias following periodontal procedures are low (Kinane et al. 2005) or almost non-measurable (Hartzell et al. 2005). Thus, the role of bacteremia in the link between periodontitis and cardiovascular disease remains unclear.

Blood markers of inflammation

IL-6 assessment

IL-6 is a pro-inflammatory cytokine secreted by T cells and macrophages to
stimulate immune response to tissue damage leading to inflammation and a potential risk marker of future cardiovascular disease (i.e. Giannessi et al. 2007, Woodward et al. 2007). Several studies have assessed the link between periodontitis and serum IL-6 levels suggesting that subjects with untreated periodontitis have elevated serum IL-6 levels (Loos et al. 2000, Ide et al. 2004, Ioannidou et al. 2006b, Pussinen et al. 2007a). There appears to be no studies assessing the additive effect of periodontitis on IL-6 levels in subjects with diagnosed cardiovascular disease. It should, however, be recognized that the relationship between cytokine serum levels (IL-6, and TNF-α) is disputed and that several studies have not been able to associate levels of such cytokines to cardiovascular events (Sukhija et al. 2007).

Conflicting results on changes in serum IL-6 levels following periodontal therapy have also been published (improving: D’Aiuto et al. 2004; no effect: Ide et al. 2003, Yamazaki et al. 2005, Elter et al. 2006, Talbert et al. 2006). Excluding subjects with a self-reported history of cardiovascular, kidney, liver, or lung disease, it has been demonstrated that 24 h after intensive periodontal treatment the treatment resulted in an acute short-term systemic inflammatory response expressed as an increase in IL-6 levels (Tonetti et al. 2007).

CRP assessments

Measuring and determining the kinetics of changes in serum of high sensitivity CRP has been proven to be useful in monitoring disease progression, or the effectiveness in the treatment of diseases that triggers a systemic inflammatory response (Mora et al. 2006, Tsimakas et al. 2006, Bansal & Ridker 2007). A summary background, and conclusions from individual studies on high sensitivity CRP values and periodontitis are presented (Table 5). A recent systematic review and meta-analysis failed to support the hypothesis that periodontal treatment can reduce systemic high sensitivity CRP levels (Ioannidou et al. 2006a).

The number of remaining teeth and clinical evidence of periodontitis has been associated with an increased risk for cardiovascular disease (Beck et al. 1996, Elter et al. 2004, Geerts et al. 2004, Latronic et al. 2007), and including sudden cardiac death (Karhunen et al. 2006). The presence of *P. gingivalis, Porphyromonas intermedia, C. rectus,* and *Tannerella forsythia* in subgingival samples has also been associated with elevated high sensitivity CRP levels (Noack et al. 2001).

Results from intervention studies have suggested that within the first day of therapy serum high sensitivity CRP values may significantly increase (D’Aiuto et al. 2005a,b). Whether such sharp increases in serum high-sensitivity CRP values suggest an acute cardiovascular disease risk remains unknown. It might not be possible to reduce serum high sensitivity CRP values to levels before the periodontal intervention 6 months following therapy (Tonetti et al. 2007).

WBC counts

Patients with acute coronary syndrome present with elevated WBC counts (Avramidis et al. 2007). WBC counts within normal range in subjects with periodontitis have been reported (Loos et al. 2000, Dietrich et al. 2002, Montebagnoli et al. 2005). Others have demonstrated that serum WBC counts are associated with acute coronary syndrome but also that subjects confirmed as not having cardiovascular disease but diagnosed with periodontitis present with higher serum WBC counts than periodontally healthy control subjects (Persson et al. 2003a, 2005a, Buhrin et al. 2005, Bender et al. 2006, Renvert et al. 2006). A significant decrease in WBC counts following periodontal therapy in subjects with aggressive periodontitis has been reported (Dietrich et al. 2002). Salivary matrix metalloproteinase-8 levels are associated with periodontitis among subjects who also have cardiovascular disease (Furuholmen et al. 2006). Such leukocyte host immunity driven proteolytic enzymes may be part of a biological explanation to the association between periodontitis and cardiovascular diseases.

Endothelial cell assessments

Plasminogen activator inhibitor-1 (PAI-1) is the principal inhibitor of tPA and urokinase (uPA), and closely associated with increased risk for the development of atherosclerosis. In inflammatory conditions in which fibrin is deposited in tissues, PAI-1 appears to play a significant role in the progression to fibrosis (Hoeckstra et al. 2004). Increased PAI-1 concentrations are independent risk markers for major adverse cardiac events because of its role in fibrinolysis (Marcucci et al. 2006). PA-1 behaves also as an acute phase protein and is regulated by IL-1 and by TNF-α (Irigoyen et al. 1999). Elevated levels of PA-1 have been reported in subjects with periodontitis (Montebagnoli et al. 2005, Bizzarro et al. 2007). This may increase the potential risk for impaired fibrinolysis, a condition that may result in a prothrombotic state and a potential risk for cardiovascular disease through thrombosis.

Periodontal intervention studies of subjects with periodontitis but no medically confirmed status have demonstrated that PA-1 increase occurs shortly after therapy. Six months following non-surgical periodontal therapy with adjunct local antibiotics, no difference in PA-1 was noticed (Tonetti et al. 2007). This was not consistent with the results of another intervention trial that included a decrease in PA-1 and TPA following tooth eradication (Taylor et al. 2006a,b). In the study by Taylor et al. (2006a,b) subjects were confirmed as having one or more medically compromising medical conditions. This may explain differences in the results obtained.

A number of non-invasive subclinical markers of cardiovascular disease exist. This includes: computed tomography of the coronary arteries, ultrasound of the carotid arteries, echocardiography, MRI, ankle-brachial index, microalbuminuria, flow-mediated dilation in the brachial artery, and pulse wave form analysis are not highly correlated with each other and do not include propensity for the important atherosclerotic phase of plaque rupture, and do not fully substitute for studies of clinical cardiovascular disease endpoints (Jacobs & Crow 2007).

Endothelial dysfunction precedes clinical manifestation of atherosclerosis (Pellegrino et al. 2005). There is evidence to suggest that periodontitis may
Table 5. Selection of studies assessing serum (high sensitivity) C-reactive protein (C-rp) values and periodontal condition under different conditions

<table>
<thead>
<tr>
<th>Publication</th>
<th>Study design</th>
<th>Results and author conclusions</th>
<th>Reviewer conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iwamoto et al. (2003)</td>
<td>Case series: 15 subjects with chronic periodontitis receiving subgingival debridement and antibiotics</td>
<td>Levels of TNF-α, hs-CRP, and adiponectin were studied before and 1 month after treatment including antibiotics</td>
<td>Effective reduction of TNF-α, hsC-RP, (C-rp from a mean of 1.7–0.9 mg/l). Large individual variation</td>
</tr>
<tr>
<td>Saito et al. (2003)</td>
<td>Case series: 179 Japanese men aged 50–54 years old, with at least 10 teeth, were examined as part of a comprehensive health examination</td>
<td>ABL around posterior teeth associated with elevated C-rp in Japanese men, suggesting an association between periodontal disease and increased risk of type 2 diabetes and CVD</td>
<td>Subjects in the highest tertile of alveolar bone loss had an increased risk for C-rp elevation > or = 1.3 mg/l (OR = 8.20, 95% CI: 1.6–40.7, p = 0.01)</td>
</tr>
<tr>
<td>Seinost et al. (2005)</td>
<td>Case–control study: 61 subjects of 3 months duration including debridement and antibiotics in treatment group</td>
<td>Change in serum CRP following treatment</td>
<td>Healthy subjects 0.8 mg/l (SD ± 0.8). Periodontitis subjects before treatment 1.7 mg/l (SD ± 1.6) Periodontitis subjects after treatment 1.1 (SD+0.9)</td>
</tr>
<tr>
<td>Best et al. (2005)</td>
<td>Case–control study: 1131 older subjects with or without periodontitis/positive bacterial enzyme test (BANA test) and serum markers of inflammation: CRP, IL-6, TNF-α</td>
<td>Periodontal disease and infection may be modifiable risk indicators to elevated levels of CRP in older people</td>
<td>Periodontitis in the presence of periodontitis (BANA test) is linked to elevated TNF-α, and IL-6 levels in older subjects. This may specifically suggest the link between periodontitis and cardiovascular disease susceptible subjects</td>
</tr>
<tr>
<td>D’Aiuto et al. (2005a, b)</td>
<td>Longitudinal case–control study: 24 subject in CTR, 21 subject on SC and 20 subject on SC+local antibiotics period: 2 months</td>
<td>CRP reductions significant to the control only in non-smokers</td>
<td>Small study groups (subgroups). Mean reduction in CRP in test groups 0.5 mg/l</td>
</tr>
<tr>
<td>Yamazaki et al. (2005)</td>
<td>Case–control + intervention study of 24 periodontitis subjects receiving non-surgical periodontal therapy</td>
<td>Trend toward higher CRP levels in patients at baseline compared with control subjects. Decrease after treatment was not significant</td>
<td>Limited effect by periodontal therapy on IL-6, TNF-α, and serum CRP levels. Periodontal therapy did not reduce CVD risk as defined by surrogate marker</td>
</tr>
<tr>
<td>Briggs et al. (2006)</td>
<td>Case–control study 92 periodontitis cases and 79 healthy controls</td>
<td>Median CRP in periodontitis subjects 2.1 and 1.4 mg/l in controls. Mean age was 58 years</td>
<td>Periodontitis and risk for coronary heart disease OR = 3 1, 95% CI: 1.0–9.2 (p < 0.05) C-rp (high/low): Periodontitis OR 0.1, 95% CI: 0.5–2.5 NS Pretreatment 3.6 mg/l (SD±9.5) Post treatment 3.3 mg/l 8 SD±5.1. Mean decrease: 0.3 mg/l</td>
</tr>
<tr>
<td>Elter et al. (2006)</td>
<td>Case series; 22 systemically healthy subjects treated for chronic periodontitis. Data from before and after debridement</td>
<td>Change in high sensitivity CRP over 1 month was monitored</td>
<td></td>
</tr>
<tr>
<td>Franck et al. (2006)</td>
<td>Case–control study subject with kidney disease with (17) or without kidney disease (27)</td>
<td>Patients with kidney disease and severe periodontitis had mean CRP = 13.2 mg/l. Patients with kidney disease without periodontitis had CRP means 10.4 mg/l p <0.05 confirmed by multiple regression analysis</td>
<td>The chronic kidney disease was responsible for CRP values and periodontitis contributed a minor element</td>
</tr>
<tr>
<td>Salzberg et al. (2006)</td>
<td>Case–control study Serum samples were collected from 93 patients with generalized aggressive periodontitis and from 91 healthy controls</td>
<td>Patients with aggressive periodontitis have statistically significant elevations in serum CRP levels compared with subjects without periodontitis</td>
<td>Aggressive periodontitis may induce a severe host inflammatory response that can be linked to systemic disease</td>
</tr>
<tr>
<td>Blum et al. (2007)</td>
<td>Case–control study 9+9 subjects with or without severe periodontitis</td>
<td>Mean hs CRP levels decreased from 2.97–2.3 mg/l (p = 0.01)</td>
<td>Small study group. Decrease in CRP on average 0.7 mg/l</td>
</tr>
<tr>
<td>Kshirsagar et al. (2007)</td>
<td>Cross-sectional study: 5537 subjects chronic hemodialysis patients with or without periodontitis</td>
<td>Severe periodontitis was linked to low serum albumin (OR = 8.2; 95% CI: 1.6–41.8; p = 0.01) but not to RP values</td>
<td>No observed association of severe periodontitis with CRP was found</td>
</tr>
</tbody>
</table>

IS, intervention study; SD, subgingival debridement.

Promote endothelial dysfunction as assessed by flow mediated dilatation of the artery (Amar et al. 2003). This has not been confirmed by brachial ankle pulse velocity assessments in subjects with periodontitis (Miyaki et al. 2006). Some studies suggest that periodontal therapy may improve brachial artery flow rate in subjects with periodontitis but with no medically confirmed diagnosis of cardiovascular disease (Mercanoglu et al. 2004, Seinost et al. 2005, Elter et al. 2006, Blum et al. 2007, Tonetti et al. 2007).

IMT

Cross-sectional and prospective evidence correlates IMT with cardiovascular disease. B-mode ultrasound measurement of the inner layers of the carotid wall, provides a well-validated index of
sub-clinical atheroma (Simon et al. 2002, de Groot et al. 2004). Periodontitis has also been associated with IMT (Beck et al. 2001). A relationship between periodontal microbiology and subclinical atherosclerosis assessed by IMT has been documented (Desvarieux et al. 2005). There are no studies that have assessed the impact on IMT as a result of periodontal interventions.

Discussion

During the last two decades, there has been an increasing interest in the impact of oral health, specifically periodontitis, on cardiovascular diseases. In one meta-analysis the findings resulted in a conclusion that periodontitis and poor oral health overall indeed contribute to the pathogenesis of cardiovascular disease (Meurman et al. 2004). Furthermore, another meta-analysis identified that the level of systemic bacterial exposure from periodontitis is the biologically pertinent exposure with regard to atherosclerotic risk (Mustapha et al. 2007). This conclusion can be illustrated by the only existing study that has assessed the subgingival microbiota in subjects with acute coronary syndrome shortly after being released from the hospital. The study demonstrated that significantly higher levels of 19/40 bacterial species could be identified in subgingival samples from subjects with a recent history of acute coronary syndrome in comparison to subjects confirmed not to have cardiovascular disease (Renvert et al. 2006). Thus the role of periodontal infections as a causative factor in the link to cardiovascular disease must be further explored.

The meta-analysis by Bahekar et al. (2007) has demonstrated that having periodontitis might enhance the risk for cardiovascular disease but that this risk is not robust. Some studies have provided high ODs between periodontitis and cardiovascular diseases (i.e. Meurman et al. 2003, Persson et al. 2003a, Buhlin et al. 2005, Engebretson et al. 2005, Geismar et al. 2006, Rech et al. 2007). These studies have used alveolar bone loss as a cumulative expression of chronic periodontitis rather than a temporal expression of inflammation (i.e. bleeding on probing and probing pocket depth). Concurrently, others have shown that probing pocket depth and clinical attachment levels as diagnostic markers of periodontitis fail to identify an association between periodontitis and cardiovascular disease (Beck et al. 2005). Such findings might discourage from intervention studies attempting at reducing the extent of bleeding on probing and probing pocket depths and thereby reducing the risk of cardiovascular disease.

Thus the strength of an association between periodontitis and cardiovascular disease based on epidemiological, and cross-sectional studies varies based on data from studies of different population of subjects. Future studies assessing the association between periodontitis and cardiovascular diseases must also consider the prevalence of both disease entities. Available studies suggest that periodontitis prevalence in older subjects is high (Terpenning et al. 2001, Persson et al. 2002, Persson et al. 2003d, Holm-Pedersen et al. 2006, Krustrup & Petersen 2006). The aspect of aging as factor in the link between periodontitis and cardiovascular diseases including stroke must be considered in future studies.

Poor oral health in general has also directly been linked to cardiovascular disease (i.e. Mattila et al. 1989, Meurman et al. 2003, Karhunen et al. 2006). The finding that tooth clearance is efficacious in reducing levels of serum markers of inflammation (Taylor et al. 2006a,b, Ellis et al. 2007) must be further investigated. In fact, the findings from these two studies suggest that the old concept of tooth clearance as a means to reduce the risk or severity of inflammatory diseases should be revisited. This may further specifically relate to older people who may have poor oral health status and chronic inflammatory diseases such as rheumatoid arthritis. Other studies have, however, demonstrated that edentulousness does not change IMT and that tooth loss and long-term periodontitis are related to subclinical atherosclerosis but only in men (Desvarieux et al. 2004).

The research on serum markers of inflammation in both cardiovascular and periodontal research is extensive. The literature clearly demonstrates that elevated proinflammatory cytokines are present in both cardiovascular diseases as well as in periodontitis. It appears that II-6, PA-1, and WBC counts are closely related to periodontitis whereas the levels of serum hs C-rp are not conclusive.

C. pneumoniae is perhaps one of the few bacteria that might be associated with an increased risk for cardiovascular disease. There are, however, few studies demonstrating that C. pneumoniae may be present in periodontal plaque samples. (Tran et al. 1997, Mäntylä et al. 2004). There are few studies having assessed the relationship between the periodontal infection and acute coronary syndrome at the time of diagnosis demonstrating that subjects with periodontitis and acute coronary syndrome have higher counts of key pathogens in periodontal pockets than found in subjects who were medically confirmed as being healthy (Renvert et al. 2006).

Stress, socioeconomic and dietary factors are approaching the level of etiological important factors both in cardiovascular disease and periodontitis. In fact, dietary factors are also about to become etiological and involved in several diseases including cardiovascular disease and periodontitis (Kaput et al. 2005).

The data on periodontal intervention and immediate increases in serum markers of inflammation may suggest that intensive periodontal therapy may result in serious adverse events (Tonetti et al. 2007). There is only one recent study that has addressed the outcome of periodontal intervention in subjects with heart disease suggesting that periodontal intervention may not induce more serious adverse events than what might be expected in the community over a 25 months period (Beck et al. 2008). Furthermore the study demonstrated that non-surgical routine periodontal therapy did not reduce the risk of serious cardiovascular events.

Given the chronic nature of both periodontitis and cardiovascular diseases, intervention at a time when already one or both disease entities are diagnosed, periodontal intervention may not reduce future cardiovascular events, or reduce symptoms of cardiovascular
disease. Preventive care may, in fact, be the most important effort in reducing the risk for cardiovascular disease by maintaining healthy oral conditions.

Conclusions

Available data suggest that periodontitis may have overall health consequences. The term "cardiovascular diseases" is a broad term and efforts are needed to specifically identify which cardiovascular diseases (i.e. stroke, acute coronary syndrome, atherosclerosis) can be linked to periodontitis. Until the precise biological mechanisms how periodontitis influences cardiovascular disease are known intervention studies should be reviewed with caution.

- Multicentre properly powered studies designed to specifically assess the prevalence and distribution of periodontitis in relation to cardiovascular diseases with focus on high-risk groups are needed.
- Cross-sectional and longitudinal studies to assess the relationship between risk exposure and host driven responses in cardiovascular and periodontal disease based on well-defined criteria are needed.
- Studies to assess the impact of confounding factors in cardiovascular diseases and periodontitis are needed.

References

Buhlin, K., Gustafsson, A., Ahnve, S., Janszky, I., Tabrizi, F. & Klinge, B. (2005) Oral health...

glycated haemoglobin targets for cardiovascular disease prevention. *Diabetes Obesity and Metabolism* 9, 792–798.

Nakib, S. A., Pankow, J. S., Beck, J. D., Offenbacher, S., Evans, G. W., Desvarieux,
Periodontitis and cardiovascular diseases

© 2008 The Authors
Journal compilation © 2008 Blackwell Munksgaard
improves endothelial dysfunction in patients with severe periodontitis. American Heart Journal 149, 1050–1054.

© 2008 The Authors
Journal compilation © 2008 Blackwell Munksgaard.

Clinical Relevance

Scientific rationale for the study: Many studies have suggested an association between cardiovascular disease and periodontitis. The scientific rationale for the present review was to identify factors that during the last three years have been identified as possible explanations to such an association.

Principal findings: The review revealed that a large number of biological, social and risk behavioral factors are shared in periodontitis and cardiovascular diseases. Specifically, inflammatory markers have been studied.

Practical implications: Practical implications remain difficult to present due to the fact that intervention studies are not conclusive. It appears that patients with severe periodontitis are at risk of developing cardiovascular disease and dental clinician should consult cardiovascular expertise in the management of such patients.